Return to Today's Publications

 

Newsletter:
Date Range (YYYY-MM-DD) -
Company, Industry or Technology:
  Search Tips


Adv. Biofuel Show Promise for Replacing Fossil Fuels (Ind. Report)
Advanced Biofuel
Date: 2020-08-31
A new study led by Colorado State University is predicting significant climate benefits stemming from the use of advanced biofuel technologies. Accounting for all of the carbon flows in biofuel systems and comparing them to those in grasslands and forests, the team found clear strategies for biofuels to have a net carbon benefit.

John Field, research scientist at the Natural Resource Ecology Lab at CSU, said it has been a challenge for the biofuel industry to demonstrate commercial viability for cellulosic biofuels created from switchgrass and other non-edible plants.

The research team used modeling to simulate switchgrass cultivation, cellulosic biofuel production and carbon capture and storage (CCS), tracking ecosystem and carbon flows. Scientists then compared this modeling to alternative ways to store carbon on the land, including growing forest or grassland.

CCS technology is being used by at least one facility in Illinois that is processing corn to ethanol as a conventional biofuel to create ethanol, but these systems are not yet widespread. As part of the study, researchers created models to simulate what this would look like at a cellulosic biofuel refinery. "What we found is that around half of the carbon in the switchgrass that comes into the refinery becomes a byproduct that would be available for carbon capture and storage. The resulting byproduct streams of high-purity CO2 would not require much separation or clean-up before being stored underground," the study noted.

The research team analyzed three contrasting U.S. case studies and found that on land where farmers or land managers were transitioning out of growing crops or maintaining pastures for grazing, cultivating switchgrass for cellulosic ethanol production had a per-hectare mitigation potential comparable to reforestation and several-fold greater than grassland restoration.

Using switchgrass can be particularly helpful in parts of the country where planting more trees is not an option.

This research was partially funded by the USDA National Institute of Food and Agriculture, the US DOE via the Center for Bioenergy Innovation, and the Sao Paulo Research Foundation in Brazil.

The study illustrates how deliberate land use choices support the climate performance of present-day cellulosic ethanol technology and how technological advancements and CCS addition could produce several times the climate mitigation potential of competing land-based biological mitigation schemes. These results affirm the climate mitigation logic of biofuels, consistent with their prominent role in many climate stabilization scenarios, the study concludes. (Source: Colorado State University, Green Car Congress, Aug., 2020) Contact: Colorado State University, Natural Resource Ecology Lab, John Field, (970) 491-1604, John.L.Field@colostate.edu, www.nrel.colostate.edu

More Low-Carbon Energy News Advanced Biofuel,  Cellulosic Biofuel,  Switchgrass,  


WVU Leading $10Mn Biomass to Bioproducts Project (Ind. Report)
WVU
Date: 2020-07-15
In Morgantown, West Virginia, with the help of a $10 million competitive grant from the U.S. Department of Agriculture's National Institute of Food and Agriculture, West Virginia University is spearheading the development of a perennial multi-feedstock production system that is sustainable and economically feasible for the region.

At the heart of the project is the establishment of the Mid-Atlantic Sustainable Biomass for Value-Added Products Consortium (MASBio), a regional group of universities, industry partners, national laboratories and governmental agencies interested in advancing the science and practice of sustainable bioproducts.

Led by, MASBio will leverage research, education and extension strategies for increasing utilization of available resources in the Mid-Atlantic region. Plans include utilizing some of the mined and marginal lands to grow switchgrass, hybrid willow, a short-rotation woody crop, which can benefit the land, economy and biomass feedstock production. The sustainable biomass crops feedstock crops will be blended with logging residue wood chips to create a massive regional multi-feedstock biomass supply chain with minimized costs, consistent quality and continuous supply.

Consortium partners include Penn State University, Virginia Tech, State University of New York College of Environmental Science and Forestry, West Virginia State University, Eastern WV Community and Technical College, U.S. Department of Energy Idaho National Laboratory and Oak Ridge National Laboratory, U.S.Forest Service Forest Products Laboratory and Rocky Mountain Research Station. Industry partners include: Double-A-Willow, Allstar Ecology, Ernst Biomass, Lignetics, Gas Technology Institute, Norris Thermal Technologies, Torresak and Eastern Biochar. (Source: WVU News, PR, 9 July, 2020) Contact: West Virginia University , Prof., Jingxin Wang, Davis College of Agriculture, Natural Resources and Design, Lindsay Willey, Interim Director of Marketing and Communications Davis College of Agriculture, Natural Resources and Design 304-293-2381; Lindsay.Willey@mail.wvu.edu, www.wvu.edu

More Low-Carbon Energy News Biomass,  Biofuel Feestock,  Willow,  Switchgrass,  


Biofuel Quotas to Get Small Lift Under Draft of EPA Plan

Date: 2020-05-29
(Bloomberg) -- The Environmental Protection Agency has drafted a plan to slightly lift biofuel-blending targets next year, while so far skirting potentially controversial decisions about exempting refineries from U.S. mandates to use plant-based fuels, according to three people familiar with the matter. Under a proposed rule now undergoing White House review, the EPA would require refiners to use 5.17 billion gallons of advanced biofuels in 2021, up from 5.09 billion gallons this year, according to two of the people. That would include 670 million gallons of cellulosic renewable fuels, such as those made from crop residue, switchgrass and biogas harvested at landfills, up from 590 million gallons required this year. The EPA is expected to propose the quotas in coming months, and under federal law faces a Nov. 30 deadline to finalize the targets. Representatives of the EPA did not immediately respond to requests for comment. (Source: Yahoo, Bloomberg, 19 May, 2020)


Cellulosic Biofuel Significantly Mitigate Climate Change (Int'l Study)
Biomass. Ben-Gurion University of the Negev
Date: 2020-03-11
A recent long-term field study by researchers at Ben-Gurion University of the Negev (BGU) and Michigan State University (MSU) has found cellulosic biofuels derived from switchgrass, giant miscanthus, poplar trees, maize residuals, restored native prairie, and a combination of grasses and vegetation that grows spontaneously following field abandonment, could significantly mitigate global warming by reducing carbon emissions.

The study found when compared with petroleum only emissions, cellulosic ethanol was "78--290 better in reducing carbon emissions; ethanol was 204--416 pct improved, biomass powered electric vehicles powered by biomass was 74--303 pct cleaner and biomass-powered electric vehicles combined with CSS was 329--558 pct superior." The research will next assess other environmental and economic aspects of bioenergy crops.

The study was conducted at Michigan State University's (MSU) Kellogg Biological Station and the University of Wisconsin's Arlington Research Station which is part of the U.S. DOE Great Lakes Bioenergy Research Center. Financial support was provided by the U.S. DOE Office of Science, Office of Energy Efficiency and Renewable Energy, U.S. National Science Foundation and Michigan State University AgBioResearch. (Source: American Associates, Ben-Gurion University of the Negev, PR, EurekaAlerts, 9 Mar.,2020) Contact: American Associates, Ben-Gurion University of the Negev. (212) 302-6443, info@aabgu.org, www.aabgu.org

More Low-Carbon Energy News Cellulosic Ethnol,  Biomass ,  Climate Change,  Global Warming,  

Showing 1 to 4 of 4.